

Tetrahedron: Asymmetry Vol. 16, No. 3, 2005

Contents

COMMUNICATION

The first asymmetric addition of organogallium to aldehydes catalyzed by chiral titanium catalystspp 605–608Zhenya Dai, Chengjian Zhu,* Minghua Yang, Yunfa Zheng and Yi Pan*pp 605–608

The asymmetric addition of trialkylgallium to aldehydes was realized using chiral titanium catalyst with ees up to 84%.

ARTICLES

Polymer-supported chiral phosphinooxathiane ligands for palladium-catalyzed pp 609-614 asymmetric allylations Hiroto Nakano,* Kouichi Takahashi, Yuri Suzuki and Reiko Fujita Ligands 1a-c Nι $Nu = CH(CO_2Me)_2$ [PdCl(η³-C₃H₅)]₂ NHCH2C6H5 Phthalimide Nu b: R = PS-Et-Gel-MB-CO Nu = CH(CO₂Me)₂: 22%, 96% ee c: R = Tenta NHCH₂C₆H₅: 90%, 99% ee Pha 1a-c

Polymer-supported phosphinooxathianes 1a-c were synthesized easily and applied to Pd-catalyzed asymmetric allylic alkylation and amination. Enantiomeric excesses of up to 99% were obtained using 1a.

Thermolysin catalyses the synthesis of cyclodextrin esters in DMSO

Ninfa Rangel Pedersen, Janni Brogaard Kristensen, Guy Bauw, Bart Jan Ravoo, Raphael Darcy, Kim Lambertsen Larsen and Lars Haastrup Pedersen*

Heptakis(2-O-decanoyl)- β -cyclodextrin was synthesised from native β -cyclodextrin and vinyl decanoate in a one-step reaction catalysed by thermolysin in DMSO. The regioselectivity was directed primarily at the C-2 position but depended on the chain length of the acyl donor.

First synthesis of 4,5-O-isopropylidene-6-thio-D-galactono-1,6-lactone as a precursor of D-galactothioseptanose

pp 623-627

Ludovic Chaveriat, Imane Stasik,* Gilles Demailly and Daniel Beaupère

Enzymatic resolution of *N***-protected-β**³**-amino methyl esters, using lipase B from** *Candida antarctica* **pp 629–634** Patricia Flores-Sánchez, Jaime Escalante* and Edmundo Castillo

Synthesis, NMR conformational studies and host-guest behaviour of new (+)-tartaric acid derivatives

pp 635-640

pp 641-645

Sacha Legrand, Hannu Luukinen, Roland Isaksson, Ilkka Kilpeläinen, Mikael Lindström, Ian A. Nicholls and C. Rikard Unelius*

Preparation of enantiopure inherently chiral calix[5]arenes Shao-Yong Li, Qi-Yu Zheng, Chuan-Feng Chen^{*} and Zhi-Tang Huang^{*}

A simple catalytic route to naproxen

Sanjeev Kumar and Uma Ramachandran*

pp 647-649

pp 651-655

pp 657-660

Asymmetric synthesis of α -sulfinylphosphonates in the thiolane series

Piotr Kielbasinski,* Piotr Lyzwa, Marian Mikolajczyk, Mihaela Gulea,* Margareth Lemarié and Serge Masson

The influence of solvent choice, acid activation and surfactant addition on the hydrolytic kinetic resolution (HKR) of terminal epoxides

Sven Aerts, Anita Buekenhoudt, Herman Weyten, Ivo F. J. Vankelecom^{*} and Pierre A. Jacobs

Several factors influencing the HKR of terminal epoxides are investigated. These factors include: solvent choice for the homogeneous reaction, acid activation of the catalyst and surfactant use in the solvent-free reaction.

Boron trifluoride etherate-assisted ring opening of ethylene oxide by a chiral organolithium: enantioselective synthesis of (R)-N-Boc-2-(2-hydroxyethyl)pyrrolidine Xiaohu Deng and Neelakandha S. Mani^{*} pp 661-664

 $\begin{array}{c|c} & s-\text{BuLi, (-)-Sparteine,} \\ & & Et_2O, -78 \,^{\circ}\text{C}, 4 \, h \\ & & & \\ Boc \\ 2 & & BF_3 \cdot Et_2O, -78 \,^{\circ}\text{C}, 2 \, h \\ \end{array} \begin{array}{c} & & & \\ & & N \\ & & & & \\ & &$

Asymmetric synthesis of both enantiomers of esters and γ -lactones from optically active 1-chlorovinyl *p*-tolyl sulfoxides and lithium ester enolates with the formation of a tertiary or a quaternary carbon stereogenic center at the β -position

Shimpei Sugiyama and Tsuyoshi Satoh*

Stereocontrolled intramolecular *meta*-arene–alkene photocycloaddition reactions using chiral tethers: efficiency of the tether derived from 2,4-pentanediol Takashi Sugimura,* Akiko Yamasaki and Tadashi Okuyama

pp 675-683

pp 665-673

Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle: (R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform Kenji Mori^{*}

pp 685-692

Monophosphite ligands derived from carbohydrates and H₈-BINOL: highly enantioselective Rh-catalyzed asymmetric hydrogenations

pp 693-697

Hanmin Huang, Xiongcai Liu, Huilin Chen and Zhuo Zheng*

Chemoenzymatic synthesis of ketomethylene tripeptide isosteres

Junhua Tao,* Shanghui Hu, Qingping Tian, Naresh Nayyar and Srin Babu

pp 699-703

Palladium-catalyzed asymmetric hydrovinylation under mild conditions using monodentate chiral pp 705–710 spiro phosphoramidite and phosphite ligands

Wen-Jian Shi, Jian-Hua Xie and Qi-Lin Zhou*

Asymmetric hydrogenation of chiral vinyloxazaborolidines under ambient conditions Soya Gamsey, Kelly DeLaTorre and Bakthan Singaram^{*}

pp 711-715

Synthesis of β -adrenergic blockers (*R*)-(-)-nifenalol and (*S*)-(+)-sotalol via a highly efficient resolution pp 717–725 of a bromohydrin precursor

Munish Kapoor, Naveen Anand, Khursheed Ahmad, Surrinder Koul, Swapandeep S. Chimni, Subhash C. Taneja* and Ghulam N. Qazi

Chiral C_2 -symmetric ligands containing two binaphthyl units linked by 2,2'-bipyridyl bridge in asymmetric catalysis

Xiao-Li Bai, Chuan-Qing Kang, Xu-Dong Liu and Lian-Xun Gao*

 $\begin{array}{c} \operatorname{Galf} \underbrace{15}_{\beta} & \operatorname{Galf} \underbrace{16}_{\beta} & \operatorname{Galf} \underbrace{15}_{\beta} & \operatorname{Galf} \longrightarrow \operatorname{ODodecyl} \\ 1 & \alpha & 1 \\ \operatorname{Galp} & \operatorname{Galp} \end{array}$

First synthesis of 5,6-branched galacto-hexasaccharide, the dimer of the trisaccharide repeating unit of the cell-wall galactans of *Bifidobacterium catenulatum* YIT 4016 Guohua Zhang, Mingkun Fu and Jun Ning*

pp 733-738

Convenient preparation of optically active *N*,*N*-**bis(4-substituted-4-aminobutyl)amines** Kazunori Tsubaki,* Tomokazu Kusumoto, Noriyuki Hayashi, Daisuke Tanima,

pp 739–743

Kaoru Fuji and Takeo Kawabata*

OTHER CONTENTS

Erratum Corrigendum Stereochemistry abstracts Instructions to contributors Cumulative author index

p 745

p 747

pp I–IV

pp V-VI

pp A129-A153

*Corresponding author

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com for more information.

This journal is part of **ContentsDirect**, the *free* alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for **ContentsDirect** online at: <u>http://contentsdirect.elsevier.com</u>

Indexed/Abstracted in: Beilstein, BIOSIS Previews, Chemical Abstracts, Current Contents: Physical, Chemical and Earth Sciences, Derwent Biotechnology Abstracts, Derwent Drug File, Ei Compendex, EMBASE/Excerpta Medica, PASCAL, Research Alert, Science Citation Index, SciSearch

ISSN 0957-4166